INSTALLATION INSTRUCTIONS FOR HOLLOW SHAFT STYLE ENCODERS
USING A TETHER ARM

Overview:

The mechanical workings of an encoder are straightforward. The rotor portion is
coupled to a shaft, so that it will turn without slippage, and the encoder body, or stator,
is prevented from rotating so that it serves as a physical reference for the rotation of
the rotor.

Within this framework, certain physical properties associated with mechanical coupling
must be observed to ensure a long operating life. The stator of the encoder and any
connector and cable loop are supported by the rotating shaft by ball bearings.
Mechanical processes are not perfect and no matter how smoothly a rotating shaft may
appear to turn, it will wobble when rotated. This small amount of movement is referred to
as runout and is usually a few thousandths of an inch (maximum) for most industrial
installations. This same principle applies to the encoder shaft as well. And here lies the
heart of the installation problem: we need to allow the wobble to occur without allowing
the stator to rotate.

If you were to hard couple the encoder shaft to a motor shaft and also hard couple the
encoder body to the motor casing, the runout of the motor shaft would fight against the
smaller, more accurate encoder bearings. This is a perfect “bearing grinding” machine!
The motor bearings will “win” in this contest and you will be replacing encoders on a
regular basis.

The solution, of course, is to ensure that some part of the assembly is flexible to
minimize the stress on the encoder bearings. In the case of a shafted encoder, there is
typically a flexible coupling between the encoder shaft and the motor shaft. For hollow
shaft encoders, a flexible tether is used between the encoder body and the motor casing.
Armed with this knowledge, you are ready to install your encoder.
Before you begin:

Ensure that you have the correct hardware for your installation and that it all fits properly. Mating parts should line up, bolt thread pitches and lengths should be appropriate and all the tools should be the correct type and size and should be at hand. Also, have these installation instructions so you don't miss any important installation steps.

Step 1

Verify that the mating shaft is the correct size nominal minus 0.002 inch max. is preferred. (Example: 5/8” shaft should be 0.6250 to 0.6230 inch diameter) Check that there are no burrs on the mating shaft and that the shaft length is correct for the encoder. Also, check shaft runout is less than 0.005” TIR. Less runout = less wobble. Excessive runout may cause premature bearing or tether damage.

Step 2

Attach the tether arm to the encoder body, using screws provided, at an angle that will orient the connector or cable exit appropriately. Hand tight is OK (approx. 10-15 in-lbs). Install the shaft clamp loosely and slide the assembly onto the mating shaft. Do not tighten the shaft clamp screw at this time.

Step 3

Rotate the tether arm until it is at the correct orientation and is aligned with the mounting feature on the shaft housing. Check to make sure that the tether is not bent or twisted (add washers or shims as necessary) and use the appropriate hardware to secure the tether arm in that position. Tighten the shaft clamp screw to between 20-30 in-lbs for HS25, HS35 and HS45 for best results.

Step 4

Sometimes wobble of the encoder housing may be visible and is not unusual. With an indicator on the outside of the encoder body, rotate the mating shaft slowly. If the reading exceeds 0.02 inch TIR (total indicator reading) it is recommended that you reinstall the encoder after adjusting the stub shaft concentricity.

Step 5

Connect the mating connector and your installation is complete.